If it's not what You are looking for type in the equation solver your own equation and let us solve it.
2x^2-189x-95=0
a = 2; b = -189; c = -95;
Δ = b2-4ac
Δ = -1892-4·2·(-95)
Δ = 36481
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$$\sqrt{\Delta}=\sqrt{36481}=191$$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(-189)-191}{2*2}=\frac{-2}{4} =-1/2 $$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(-189)+191}{2*2}=\frac{380}{4} =95 $
| x^2-27x+4=0 | | 7v-8v=8 | | n+7=6.2 | | (2x+16)2=45 | | 3(x-2)-4(2x-3)=-44 | | 8-5x=-36 | | 7(x+3)=2(14)-2(x+2) | | 2(-3z+4)=-16 | | 0=2x^2-3x-209 | | 2z2+12z=0 | | 11.99=2g+3.73 | | K=2z-4 | | 28/7=15/x | | 2x^2+-8x-4=0 | | 6=1/3x+2 | | 120+.40x=60+.90x | | 5+x/6=2 | | y^2-16y+60=0 | | 34/7=3.12/x | | (a-5)/5=12 | | -2-2x+x^2=0 | | 3/4a-3=3 | | 1.10=x+(x*1) | | 7(p–86)=91 | | 4x10=-6x+200 | | 14/x-5=16 | | 10x÷4=2 | | 120+.40x=60+.90 | | 34/7=312/x | | 4=12÷u | | 14÷x-5=16 | | 9x^2-108x+180=0 |